
Embree: Ray Tracing Kernels

SIGGRAPH 2012

Legal Disclaimer and Optimization Notice

SIGGRAPH 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY

ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING

TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change to any of those factors may cause the results

to vary. You should consult other information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk are trademarks

of Intel Corporation in the U.S. and other countries.
Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Embree: Ray Tracing Kernels

Motivation

• Ray tracing is used heavily for professional graphics

• Implementing a fast ray tracer is difficult

Goal

• Provide the fastest ray tracing kernels to developers

• Address misconceptions about relative performance of
CPUs and GPUs for ray tracing

3

What is Embree?

• The fastest ray tracing kernels for Intel® CPUs

• Designed for Monte Carlo ray tracing

• Easy to integrate into existing applications

• Published under the Apache 2.0 license on ISN:
http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/

4

Architecture

 Professional Graphics Application
CAD, digital content creation, visualization, movie production

 Rendering Engine
Distributed ray tracing, path tracing, photon mapping, …

 Ray Tracing Kernel
Fast acceleration structure build and traversal

Embree

5

Status

• Version 1.0 released in November 2011

• Broad adoption by developers and researchers

• 2-5x speed-up over existing implementations

• Version 1.1 released … today!

6

New Features in Embree 1.1

• 2x lower memory consumption during rendering

• 3x lower memory consumption during BVH build

• Up to 2x faster BVH build

• Improved ray/triangle intersection accuracy

• Support for motion blur

• Support for very large scenes

7

User Feedback

“I had approached my renderer from the GPU aspect.

But once I saw Embree it completely shifted my

direction. The CPU with extensions is a more viable

platform and thanks to your demonstration / research

release of Embree this has totally changed my

approach which I am thankful for.”

 Gary Herbst

8

The Embree Example

Renderer

Progressive Path Tracing

1000 x 1200 pixel, rendered on four Intel® Xeon® Processor E7-4860

Model courtesy of Martin Lubich, www.loramel.net

72 milliseconds 1 second 1 minute

10

INTEL CONFIDENTIAL 11

Model courtesy of Martin Lubich

www.loramel.net

The Embree Kernels

Monte Carlo Ray Tracing

Light

Pixe

l

13

Two Kinds of Ray Distributions

Incoherent Rays

(typical for Monte Carlo)

Coherent Rays

14

BVH Acceleration Structure

15

BVH Acceleration Structure

16

BVH Acceleration Structure

17

BVH Acceleration Structure

18

BVH Acceleration Structure

19

Solution Space for Vectorized Ray Tracing

Single Ray

SIMD

Traversal

Scalar

Traversal

Packet

Traversal

Independent

Ray Traversal
Multi Ray

Single

Ray

Single Box Multi Box

20

BVH4 Memory Layout

BVH4 Layout Traditional BVH Layout

21

BVH4 Traversal

miss

near1

near2

near3

For each dimension:

Intersect ray with near plane of each box in

SIMD

Intersect ray with far plane of each box in SIMD

Clip the near and the far parameters
22

New Features in Embree 1.1

55 MB

Nodes

319 MB

Precomputed Triangles

Memory Consumption During Rendering

Crown (4.8M Triangles)

44% less data
55 MB

Nodes

114 MB

Indices

40 MB

Vertice

s

Embree 1.0: Precomputed SSE triangles (v0, e1, e2,

Ng)

Additional in Embree 1.1: SSE friendly indexed face

set

24

45% less memory for 10% lower performance

Crown

4.8 M Tri

Dragon

7.3 M Tri

Powerplant

1.6 M Tri

Precomputed

Triangles
44 Mrps 100 Mrps 68 Mrps

Indexed

Face Set
39 Mrps 93 Mrps 61 Mrps

Relative

Performance
-11.4 % -7.0 % -10.3 %

4x Intel® Xeon® Processor E7-4860

25

Memory Consumption of BVH Build

• Embree 1.0: Indices into Node and Triangle Array

– Problematic conservative pre-allocations (worst case of 1 out of 4 triangles filled).

• Embree 1.1: Pointers to Nodes and Triangles

– On-demand allocations possible.

 About 3x lower memory consumption compared to Embree 1.0

26

Up to 2x Faster BVH Builder

Improvements:

• Optimized allocator for nodes, triangles, and

primitive lists.

• Single pass to evaluate heuristic and perform

split.

• In-place partition also for parallel splits.

• No pre-allocations at build startup.

• Improved parallelization for spatial split builder.
BVH2, SAH binning

4x Intel® Xeon® Processor E7-4860

 27

0

5

10

15

20

25

30

35

40

1 6 11 16 21 26 31 36

P
e
rf

o
rm

a
n

c
e
 [

m
il
li
o

n
 t

ri
a
n

g
le

s
/s

]

Number of Cores

Embree 1.1

Embree 1.0

2x

Ray Triangle Intersection

Möller Trumbore

ABC = det(dir,v2-v1,v1-v0)

A = det(dir,org-p0,v1-v0)

B = det(dir,org-p0,v2-v1)

C = ABC – A – B

Improved performance

by reducing accuracy

of 1 edge test.

Stable Plücker (Additional in Embree

1.1)

ABC = det(dir,v2-v1,v1-v0)

A = det(dir,org-p0,v1-v0)

B = det(dir,org-p0,v2-v1)

C = det(dir,org-p0,v0-v2)

Improved accuracy

by performing all 3

tests at high

precision.

28

v1

B
A

v0

v1

v2

C

Performance Impact of Plücker Test

Crown

4.8 M Tri

Dragon

7.3 M Tri

Powerplant

1.6 M Tri

Möller

Trumbore
44 mrps 100 mrps 68 mrps

Plücker 41 mrps 98 mrps 65 mrps

Relative

Performance
-6.8 % -2.0 % -4.4 %

4x Intel® Xeon® Processor E7-4860

29

Combining Memory and Accuracy Optimizations

Indexed Face Set,

Plücker Test
Indexed Face Set,

Möller Trumbore

Precalculated

Möller Trumbore

Pre-Gathered

Vertices,

Plücker Test

More Accuracy

More Performance

L
e
s
s
 M

e
m

o
ry

M
o

re
 P

e
rf

o
rm

a
n
c
e

30

Support for Linear Motion Blur

Linear motions:

• Good approximation for short shutter times.

• Approximated curved motion by piecewise linear motion.

Key Idea:

• Linearly interpolated geometry can be bounded by
linearly interpolated bounds.

Algorithm:

• Interpolate bounds at time t during traversal.

• Interpolate triangle vertices at time t during intersection.

t0

t

t1

31

Performance Impact of Motion Blur

Crown

4.8 M Tri

Dragon

7.3 M Tri

Powerplant

1.6 M Tri

Static 44 mrps 100 mrps 68 mrps

Motion Blur 29 mrps 71 mrps 25 mrps

Relative

Performance
-34.1 % -29.0 % -63.2 %

4x Intel® Xeon® Processor E7-4860

32

Outlook: Embree for Intel® Xeon

Phi™

Intel® Xeon® Brand Family

Intel® Xeon® Phi™

• Parallel performance to power breakthrough innovation

• Delivering extremely scalable performance for parallel

applications (e.g. simulation, ray tracing and analytics)

Intel Xeon® Processors E5-1600/2600 Product Family

• High performance computing for mainstream applications

• Accelerating your innovation with exponential

performance gains over previous generations

Intel® Xeon® Phi™Architecture

Optimized for highly parallel performance

Groundbreaking differences

• > 50 Smaller, less power consuming cores

• High Memory Bandwidth

• Highly parallel architecture

• Wider vector processing units for greater floating point

performance/watt

35

Embree 2.0 Design Goals

• Two primary goals

• Goal #1: As easy to use and extend as Embree 1.x

• Goal #2: High performance on Intel® Xeon Phi™

• Problem: Requires more than just new single-ray kernels for Intel®

Xeon Phi™

36

Traditional Embree 1.x Architecture

 Application (C++, scalar)

E.g. visualization, lighting simulation, …

 Ray Tracing Kernels (Intrinsics, SIMD)

E.g., BVH with single ray traversal

User Code

Embree

 Rendering Engine (C++, scalar)

E.g. path tracer (Embree path tracer but one

example)

37

Embree 1.x Issues with wide SIMD

• Intel® Xeon Phi™ : 16-wide SIMD, focus on throughput performance

 Causes two issues with Embree 1.x Architecture

Problem #1: Harder to use wide SIMD in single-ray kernels

- E.g.: “16-wide BVH” not 4x as efficient as “4-wide BVH”

- Instead, prefer working on “packets” of 16 rays in parallel where possible

- Problem: can’t traverse 16 rays if scalar renderer only produces 1 at a time

Problem #2: “Scalar Renderer” doesn’t make use of vector units

- Large scalar portion of runtime = diminishing return of wider SIMD ( Amdahl’s

law)

 38

Embree 2.x Approach for wide SIMD

 Application (C++, scalar)

E.g. visualization, lighting simulation,

…

 Ray Tracing Kernels (Intrinsics)

E.g., BVH with single ray traversal

 Rendering Engine (C++, scalar)

E.g. path tracer

• Solution: Use SPMD compiler to vectorize renderer as well (ISPC)

User Code

Low-level

RT kernels

Embree 1.x: Scalar Renderer

39

Embree 2.x Approach for wide SIMD

 Application (C++, scalar)

E.g. visualization, lighting simulation,

…

 Ray Tracing Kernels (Intrinsics)

E.g., BVH with single ray traversal

 Rendering Engine (C++, scalar)

E.g. path tracer

• Solution: Use SPMD compiler to vectorize renderer as well (ISPC)

 Application (C++, scalar)

E.g. visualization, lighting simulation,

…

 Ray Tracing Kernels (Intrinsics)

E.g., hybrid packet/single-ray

traversal

User Code

Low-level

RT kernels

Embree 1.x: Scalar Renderer Embree 2.0 : SPMD Renderer

40

Embree 2.x Approach for wide SIMD

 Application (C++, scalar)

E.g. visualization, lighting simulation,

…

 Ray Tracing Kernels (Intrinsics)

E.g., BVH with single ray traversal

 Rendering Engine (C++, scalar)

E.g. path tracer

• Solution: Use SPMD compiler to vectorize renderer as well (ISPC)

 Application (C++, scalar)

E.g. visualization, lighting simulation,

…

 Ray Tracing Kernels (Intrinsics)

E.g., hybrid packet/single-ray

traversal

User Code

Low-level

RT kernels

 Rendering Engine (SPMD  vector!)

E.g. path tracer

Embree 1.x: Scalar Renderer Embree 2.0 : SPMD Renderer

41

Embree 2.x Approach for wide SIMD

• Implemented as new Embree “device”

• Same scalar interface for apps as Embree 1.x

• Use “Intel SPMD Program Compiler (ISPC)” for SPMD renderer *

• SPMD: User “sees” scalar code ( code as easy to write/maintain as scalar

code) ….

• … but vectorized (one program per SIMD lane) throughout renderer (

performance)

• Use low-level intrinsics kernel for (16-wide!) ray traversal

• Benthin et al, “Combining Single and Packet Ray Tracing for Arbitrary Ray

Distributions on the Intel® MIC Architecture”, IEEE TVCG 2012

• Of course, can also implement one’s own (SPMD-)traversers in ISPC

* The Intel SPMD Program Compiler, http://ispc.github.com

42

Embree 2.x Summary

• Fully optional SPMD extension (scalar version on Xeon® still

available)

• Uses the right tool for each application layer

• Excellent performance and high programmer productivity

• Code is portable between Xeon® and Intel® Xeon Phi™

• Optional integration of hand-optimized kernels

43

Features Embree 1.x Embree 2.x

Intel® Core™ Yes Yes

Intel® Xeon® Yes Yes

Intel® Xeon® Phi™ No Yes

Demo!

