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Embree: Ray Tracing Kernels 

Motivation 

• Ray tracing is used heavily for professional graphics 

• Implementing a fast ray tracer is difficult 

 

Goal 

• Provide the fastest ray tracing kernels to developers 

• Address misconceptions about relative performance of 
CPUs and GPUs for ray tracing 
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What is Embree? 

• The fastest ray tracing kernels for Intel® CPUs 

• Designed for Monte Carlo ray tracing 

• Easy to integrate into existing applications 

• Published under the Apache 2.0 license on ISN: 
http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ 
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Architecture 

 Professional Graphics Application 
CAD, digital content creation, visualization, movie production 

 Rendering Engine 
Distributed ray tracing, path tracing, photon mapping, … 

 Ray Tracing Kernel 
Fast acceleration structure build and traversal 

Embree 
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Status 

• Version 1.0 released in November 2011 

• Broad adoption by developers and researchers 

• 2-5x speed-up over existing implementations 

 

• Version 1.1 released … today! 
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New Features in Embree 1.1 

• 2x lower memory consumption during rendering 

• 3x lower memory consumption during BVH build 

• Up to 2x faster BVH build 

• Improved ray/triangle intersection accuracy 

• Support for motion blur  

• Support for very large scenes 
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User Feedback 

“I had approached my renderer from the GPU aspect. 

But once I saw Embree it completely shifted my 

direction. The CPU with extensions is a more viable 

platform and thanks to your demonstration / research 

release of Embree this has totally changed my 

approach which I am thankful for.” 

 Gary Herbst 
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The Embree Example 

Renderer 



Progressive Path Tracing 

1000 x 1200 pixel, rendered on four Intel® Xeon® Processor E7-4860 

Model courtesy of Martin Lubich, www.loramel.net 

72 milliseconds 1 second 1 minute 
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Model courtesy of Martin Lubich 
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The Embree Kernels 



Monte Carlo Ray Tracing 

Light 

Pixe

l 
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Two Kinds of Ray Distributions 

Incoherent Rays 

(typical for Monte Carlo) 

Coherent Rays 
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BVH Acceleration Structure 
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BVH Acceleration Structure 
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BVH Acceleration Structure 
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BVH Acceleration Structure 
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BVH Acceleration Structure 
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Solution Space for Vectorized Ray Tracing 

Single Ray 

SIMD 

Traversal 

Scalar 

Traversal 

Packet 

Traversal 

Independent 

Ray Traversal 
Multi Ray 

Single 

Ray 

Single Box Multi Box 
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BVH4 Memory Layout 

BVH4 Layout Traditional BVH Layout 
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BVH4 Traversal 

miss 

near1 

near2 

near3 

For each dimension: 

Intersect ray with near plane of each box in 

SIMD 

Intersect ray with far plane of each box in SIMD 

Clip the near and the far parameters 
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New Features in Embree 1.1 



55 MB 

Nodes 

319 MB 

Precomputed Triangles 

Memory Consumption During Rendering 

Crown (4.8M Triangles) 

44% less data 
55 MB 

Nodes 

114 MB 

Indices 

40 MB 

Vertice

s 

Embree 1.0: Precomputed SSE triangles (v0, e1, e2, 

Ng) 

Additional in Embree 1.1: SSE friendly indexed face 

set 
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45% less memory for 10% lower performance 

Crown 

4.8 M Tri 

Dragon  

7.3 M Tri 

Powerplant 

1.6 M Tri 

Precomputed 

Triangles 
44 Mrps 100 Mrps 68 Mrps 

Indexed  

Face Set 
39 Mrps 93 Mrps 61 Mrps 

Relative 

Performance 
-11.4 % -7.0 % -10.3 % 

4x Intel® Xeon® Processor E7-4860 

25 



Memory Consumption of BVH Build 

• Embree 1.0: Indices into Node and Triangle Array 

– Problematic conservative pre-allocations (worst case of 1 out of 4 triangles filled). 

 

• Embree 1.1: Pointers to Nodes and Triangles 

– On-demand allocations possible. 

 

 About 3x lower memory consumption compared to Embree 1.0 
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Up to 2x Faster BVH Builder 

Improvements: 

• Optimized allocator for nodes, triangles, and 

primitive lists. 

• Single pass to evaluate heuristic and perform 

split. 

• In-place partition also for parallel splits. 

• No pre-allocations at build startup. 

• Improved parallelization for spatial split builder. 
BVH2, SAH binning 

4x Intel® Xeon® Processor E7-4860 
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Ray Triangle Intersection 

Möller Trumbore 

ABC = det(dir,v2-v1,v1-v0) 

A = det(dir,org-p0,v1-v0) 

B = det(dir,org-p0,v2-v1) 

C = ABC – A – B 

Improved performance 

by reducing accuracy 

of 1 edge test. 

 

Stable Plücker (Additional in Embree 

1.1) 

ABC = det(dir,v2-v1,v1-v0) 

A = det(dir,org-p0,v1-v0) 

B = det(dir,org-p0,v2-v1) 

C = det(dir,org-p0,v0-v2) 

Improved accuracy 

by performing all 3 

tests at high 

precision. 
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Performance Impact of Plücker Test 

Crown 

4.8 M Tri 

Dragon  

7.3 M Tri 

Powerplant 

1.6 M Tri 

Möller 

Trumbore 
44 mrps 100 mrps 68 mrps 

Plücker 41 mrps 98 mrps 65 mrps 

Relative 

Performance 
-6.8 % -2.0 % -4.4 % 

4x Intel® Xeon® Processor E7-4860 
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Combining Memory and Accuracy Optimizations 

Indexed Face Set, 

Plücker Test 
Indexed Face Set,  

Möller Trumbore 

Precalculated 

Möller Trumbore 

Pre-Gathered 

Vertices, 

Plücker Test 

More Accuracy 

More Performance 
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Support for Linear Motion Blur 

Linear motions: 

• Good approximation for short shutter times. 

• Approximated curved motion by piecewise linear motion. 

Key Idea: 

• Linearly interpolated geometry can be bounded by  
linearly interpolated bounds. 

Algorithm: 

• Interpolate bounds at time t during traversal. 

• Interpolate triangle vertices at time t during intersection. 

 

 

t0 

t 

t1 
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Performance Impact of Motion Blur 

Crown 

4.8 M Tri 

Dragon  

7.3 M Tri 

Powerplant 

1.6 M Tri 

Static 44 mrps 100 mrps 68 mrps 

Motion Blur 29 mrps 71 mrps 25 mrps 

Relative 

Performance 
-34.1 % -29.0 % -63.2 % 

4x Intel® Xeon® Processor E7-4860 
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Outlook: Embree for Intel® Xeon 

Phi™ 



Intel® Xeon® Brand Family 

Intel® Xeon® Phi™  

• Parallel performance to power breakthrough innovation 

• Delivering extremely scalable performance for parallel  

applications (e.g. simulation, ray tracing and analytics) 

Intel Xeon® Processors E5-1600/2600 Product Family  

• High performance computing for mainstream applications  

• Accelerating your innovation with exponential  

performance gains over previous generations 



Intel® Xeon® Phi™Architecture 

Optimized for highly parallel performance 

Groundbreaking differences 

• > 50 Smaller, less power consuming cores 

• High Memory Bandwidth 

• Highly parallel architecture 

• Wider vector processing units for greater floating point 

performance/watt 
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Embree 2.0 Design Goals 

• Two primary goals 

• Goal #1: As easy to use and extend as Embree 1.x 

• Goal #2: High performance on Intel® Xeon Phi™ 

• Problem: Requires more than just new single-ray kernels for Intel® 

Xeon Phi™ 
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Traditional Embree 1.x Architecture  

 Application (C++, scalar) 

E.g. visualization, lighting simulation, …  

 Ray Tracing Kernels (Intrinsics, SIMD) 

E.g., BVH with single ray traversal 

User Code 

Embree 

 Rendering Engine (C++, scalar) 

E.g. path tracer (Embree path tracer but one 

example) 
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Embree 1.x Issues with wide SIMD 

• Intel® Xeon Phi™ : 16-wide SIMD, focus on throughput performance 

 Causes two issues with Embree 1.x Architecture 

Problem #1: Harder to use wide SIMD in single-ray kernels  

- E.g.: “16-wide BVH” not 4x as efficient as “4-wide BVH” 

- Instead, prefer working on “packets” of 16 rays in parallel where possible 

- Problem: can’t traverse 16 rays if scalar renderer only produces 1 at a time 

Problem #2: “Scalar Renderer” doesn’t make use of vector units 

- Large scalar portion of runtime = diminishing return of wider SIMD ( Amdahl’s 

law) 
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Embree 2.x Approach for wide SIMD 

 Application (C++, scalar) 

E.g. visualization, lighting simulation, 

…  

 Ray Tracing Kernels (Intrinsics) 

E.g., BVH with single ray traversal 

 Rendering Engine (C++, scalar) 

E.g. path tracer 

• Solution: Use SPMD compiler to vectorize renderer as well (ISPC) 

User Code 

Low-level 

RT kernels 

Embree 1.x: Scalar Renderer 
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Embree 2.x Approach for wide SIMD 

 Application (C++, scalar) 

E.g. visualization, lighting simulation, 

…  

 Ray Tracing Kernels (Intrinsics) 

E.g., BVH with single ray traversal 

 Rendering Engine (C++, scalar) 

E.g. path tracer 

• Solution: Use SPMD compiler to vectorize renderer as well (ISPC) 

 Application (C++, scalar) 

E.g. visualization, lighting simulation, 

…  

 Ray Tracing Kernels (Intrinsics) 

E.g., hybrid packet/single-ray 

traversal 

User Code 

Low-level 

RT kernels 

Embree 1.x: Scalar Renderer Embree 2.0 : SPMD Renderer 
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Embree 2.x Approach for wide SIMD 

 Application (C++, scalar) 

E.g. visualization, lighting simulation, 

…  

 Ray Tracing Kernels (Intrinsics) 

E.g., BVH with single ray traversal 

 Rendering Engine (C++, scalar) 

E.g. path tracer 

• Solution: Use SPMD compiler to vectorize renderer as well (ISPC) 

 Application (C++, scalar) 

E.g. visualization, lighting simulation, 

…  

 Ray Tracing Kernels (Intrinsics) 

E.g., hybrid packet/single-ray 

traversal 

User Code 

Low-level 

RT kernels 

 Rendering Engine (SPMD  vector!) 

E.g. path tracer 

Embree 1.x: Scalar Renderer Embree 2.0 : SPMD Renderer 
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Embree 2.x Approach for wide SIMD 

• Implemented as new Embree “device” 

• Same scalar interface for apps as Embree 1.x 

• Use “Intel SPMD Program Compiler (ISPC)” for SPMD renderer *  

• SPMD: User “sees” scalar code ( code as easy to write/maintain as scalar 

code) ….  

• … but vectorized (one program per SIMD lane) throughout renderer ( 

performance) 

• Use low-level intrinsics kernel for (16-wide!) ray traversal 

• Benthin et al, “Combining Single and Packet Ray Tracing for Arbitrary Ray 

Distributions on the Intel® MIC Architecture”, IEEE TVCG 2012 

• Of course, can also implement one’s own (SPMD-)traversers in ISPC 

 

* The Intel SPMD Program Compiler, http://ispc.github.com 
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Embree 2.x Summary 

• Fully optional SPMD extension (scalar version on Xeon® still 

available) 

• Uses the right tool for each application layer 

• Excellent performance and high programmer productivity 

• Code is portable between Xeon® and Intel® Xeon Phi™ 

• Optional integration of hand-optimized kernels 
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Features  Embree 1.x Embree 2.x 

Intel® Core™ Yes Yes 

Intel® Xeon®  Yes Yes 

Intel® Xeon® Phi™  No Yes  



Demo! 


