
Sven Woop, Attila Áfra, Ingo Wald, Carsten Benthin

Intel Corporation

Embree API
Advanced Features
Embree Performance

2

3

Usage of Ray Tracing Today

§ Special effects in movies (better image quality,
faster feedback)

§ High quality rendering for product visualization

§ Provides higher fidelity for automotive rendering,
architectural design, etc.

§ Various kind of simulations
(lighting, sound, particles, collision detection, etc.)

§ Prebaked lighting in games

4

Fast Ray Tracing Challenges

Multi-threading

§ Easy for rendering but difficult for hierarchy construction

Vectorization

§ Efficient use of SIMD units, different ISAs (SSE, AVX, AVX2, AVX-512)

Domain knowledge

§ Many different data structures and algorithms to choose from

Support for different CPUs

§ Different ISAs/CPU types favor different data structures, data layouts, and algorithms

Different usage scenarios

§ e.g. large model visualization favors memory conservative algorithms

Embree Ray Tracing Kernels

§ Provides highly optimized and scalable ray tracing kernels

– Focus on acceleration structure build and ray traversal

§ Highest ray tracing performance on CPUs

– 1.5–6× speedup reported by users

§ Support for latest CPUs and ISAs (e.g. AVX-512)

§ Targets professional rendering applications

§ API for easy integration into applications

§ Free and Open Source under Apache 2.0 license

– http://embree.github.com

5

Embree Timeline

6

2.
0:

 X
eo

n
Ph

i,
Ra

y
pa

ck
et

s,
 IS

PC

2.
1:

 N
ew

 A
PI

, R
un

tim
e

co
de

 s
el

ec
tio

n

2.
2:

 In
te

rs
ec

tio
n

fil
te

r

2.
3:

 H
ai

r s
up

po
rt

2.
3.

1:
 B

VH
8,

 S
pa

tia
l s

pl
its

2.
4:

 S
ub

di
vi

si
on

 s
ur

fa
ce

su

pp
or

t

2.
5:

 T
hr

ea
di

ng
 B

ui
ld

in
g

Bl
oc

ks

2.
6:

 In
te

rp
ol

at
io

n

2.
7:

 D
ev

ic
e

co
nc

ep
t

2.
8:

Li

ne
 g

eo
m

et
ry

, Q
ua

d
ge

om
et

ry

2.
9:

 R
ay

 s
tr

ea
m

s

2.
10

: G
eo

m
et

ric
 c

ur
ve

2.
11

:
Fr

us
tu

m
 tr

av
er

sa
l

2.
12

: M
ul

ti
se

gm
en

t
m

ot
io

n
bl

ur

2.
14

: R
ib

bo
n

ha
ir

in
te

rs
ec

to
r

2.
15

: B
-S

pl
in

e
ba

si
s

2.
16

: I
m

pr
ov

ed
 m

ul
ti

se
gm

en
t m

ot
io

n
bl

ur
,

im
pr

ov
ed

 tw
o

le
ve

l
bu

ild
er

2017201620152014

7

Embree Features

§ Find closest hit (rtcIntersect), find any hit (rtcOccluded)

§ Single rays, ray packets (4, 8, 16), ray streams (N)

§ High-quality and high-performance BVH builders

§ Triangles, quads, subdivs + displacement, curves, instances, user defined
geometries

§ Multi segment motion blur

§ Intel® SPMD Program Compiler (ISPC) support

§ Intel® Threading Building Blocks (TBB) support

Embree System Overview
Embree API (C and ISPC)

Ray Tracing Kernel Selection

Acceleration
Structures

bvh4.triangle4
bvh8.triangle4
bvh4.quad4v

…

Builders

SAH Builder
Spatial Split Builder

Morton Builder
BVH Refitter

Traversal

Single Ray
Packet/Hybrid

Ray Stream

Common Vector and SIMD Library
(Vec3f, Vec3fa, vfloat4, vfloat8, vfloat16, …, SSE2, SSE4.1, AVX, AVX2, AVX-512)

Intersection

Möller-Trumbore
Plücker

Bézier Curve
Line Segment
Triangle Grid

Subdiv Engine

B-Spline Patch
Gregory Patch

Tessellation Cache
Displ. Mapping

8

Embree Overview

Advanced Features
Embree Performance

9

10

Embree API Overview

§ Version 2 of the Embree API (version 3 in progress)

§ C and ISPC version

§ Object oriented

§ Easy to use

§ Hides implementation details

§ For details visit https://embree.github.io/api.html

11

Scene is a container for a set of
geometries

Scene flags passed at creation time

§ Static scene

§ Dynamic scene

§ etc.

Scene geometry changes have to get
commited (rtcCommit), which triggers
BVH build

Example: Scene creation
// include Embree headers
#include <embree2/rtcore.h>

int main()
{

// create Embree device at application
startup

RTCDevice device = rtcNewDevice ();

// create scene
RTCScene scene = rtcDeviceNewScene

(device, RTC_SCENE_STATIC,
RTC_INTERSECT1);

// add geometries
... later slide ...

// commit changes
rtcCommit(scene);

// trace rays
... later slide ...

}

12

Triangle mesh contains vertex and
index buffers

Number of triangles and vertices set at
creation time

Shared buffers of flexible layout
(offset + stride) supported

Example: Triangle Mesh creation
// application vertex and index layout
struct Vertex { float x, y, z, s, t; };
struct Triangle { int materialID, v0, v1, v2; };

// add mesh to scene
unsigned int geomID = rtcNewTriangleMesh

(scene, RTC_STATIC_GEOMETRY,
numTriangles, numVertices, 1);

// set data buffers
rtcSetBuffer(scene, geomID, RTC_VERTEX_BUFFER,

vertexPtr, 0, sizeof(Vertex));
rtcSetBuffer(scene, geomID, RTC_INDEX_BUFFER,

indexPtr, 4, sizeof(Triangle));

// add more geometries
...

// commit changes
rtcCommit(scene);

13

Intel® SPMD Program Compiler (ISPC)

§ C-based language plus vector extensions

§ Simplifies writing vectorized renderer

§ Scalar looking code that gets vectorized automatically

§ Guaranteed vectorization

§ Compilation to different vector ISAs (SSE, AVX, AVX2, AVX-512)

§ Available as Open Source from http://ispc.github.com

14

Example: Rendering using ISPC
// loop over all screen pixels
foreach (y=0 ... screenHeight-‐1, x=0 ... screenWidth-‐1) {

// create and trace primary ray
RTCRay ray = make_Ray(p, normalize(x*vx + y*vy + vz), eps, inf);
rtcIntersect(scene, ray);

// environment shading
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) {
pixels[y*screenWidth+x] = make_Vec3f(0.0f); continue;

}

// calculate hard shadows
RTCRay shadow = make_Ray(ray.org+ray.tfar*ray.dir, neg(lightDir), eps, inf);
rtcOccluded(scene, shadow);

if (shadow.geomID == RTC_INVALID_GEOMETRY_ID)
pixels[y*width+x] = colors[ray.primID]*(0.5f + clamp(-‐dot(lightDir, normalize(ray.Ng)), 0.0f, 1.0f));

else
pixels[y*width+x] = colors[ray.primID]*0.5f;

}

Embree Overview
Embree API

Embree Performance

15

16

Quad Meshes

§ Quad rendered as pairs of triangles
(v0,v1,v3 and v2,v3,v1)

§ Mixed Triangle/Quad mesh supported as triangles
can also get encoded using quads (v0,v1,v3,v3)

§ Most 3D modeling packages produce quad meshes

§ Lower memory consumption

§ Faster BVH building

§ Ray Tracing slightly slower than for triangles v0

v1

v2

v3

Catmull Clark Subdivision Surfaces

§ Converts coarse mesh into smooth surface by
subdivision (C2 continous almost everywhere)

§ Support for arbitrary topology (generalization of B-
spline surface, no trimming required as with NURBS)

§ Established as standard in movie production

§ Embree implementation compatible with
OpenSubdiv 3.0 (creases, boundary modes, etc.)

§ Vector displacement mapping supported

17

18

Cubic Spline Curves

§ Cubic polynomial curves
– Bézier basis, B-spline basis, and line segments
– Varying radius along the curve

§ Two accuracies (close vs. distant curves):
– Sweep surface of a circle along curve
– Ray oriented ribbon primitive

§ High performance through use of
oriented bounding boxes [Woop et al. 2014]

§ Low memory consumption through
direct ray/curve intersection

p0/r0 p1/r1
p2/r2

p3/r3

19

User Defined Geometries

§ Enables implementing custom primitives and
features not provided by Embree
– e.g., sphere, disk, multi level instancing,

rotation motion blur, etc.

§ User provides:
– Bounding function
– Intersect and Occluded functions

20

Intersection Filter Functions

§ Per geometry callback that is called during traversal for
each primitive intersection

§ Callback can accept or reject hit

§ Can be used for:
– Trimming curves (e.g. modeling tree leaves)
– Transparent shadows (reject and accumulate)
– Find all hits (reject and collect)
– Advanced self intersection avoidance

21

Multi Segment Motion Blur

§ Important to render fast curved motion (e.g. rotating
wheel, fight scenes, spinning dancer, etc.)

§ Sequence of time steps to be linearly interpolated
provided to renderer.

§ Typically equidistant time steps and often different
number of time steps per geometry.

Multi Segment Motion Blur Implementation

§ 4D-BVH which stores linear spatial and temporal bounds
– BVH can spatially separate geometries
– BVH can reduce time ranges where required

§ High temporal resolution for parts of the scene supported efficiently

§ Longer animations efficiently supported, e.g. to render multiple frames using
single geometry setup

§ Large memory savings compared to Embree v2.12 implementation

22

Memory Consumption

Llama Barbershop Train Turtle Barbarian
Crowd

Turtle Barbarian Turtle Barbarian
Rotate 0.5x

Embree 2.12

Embree 2.16

Smaller BVH due to
varying number of

time segments

Similar BVH size

9x2.5x

23

Render Performance

Llama Barbershop Train Turtle Barbarian
Crowd

Turtle Barbarian Turtle Barbarian
Rotate 0.5x

Embree 2.12

Embree 2.16

Faster due to
less memory traffic

Competitive but slightly
slower.

24

Multi Segment Motion Blur Implementation

“STBVH: A Spatial-Temporal BVH for Efficient Multi-Segment Motion Blur” Sven
Woop, Attila T. Afra, Carsten Benthin, High Performance Graphics 2017

“High Performance Rendering Appliance” demo at Intel booth #807

25

26

Embree Dynamic Scene Support

§ Two level BVH for optimal build performance

§ only changed geometries have to get updated

§ Traditional two level build causes suboptimal render performance
– multiple geometries traversed at overlapping region
– wrong traversal order at overlapping region

27

Embree Improved Top Level Build

§ Top level BVH built using novel approach
– Exploit available BVH of geometries
– Open large BVH nodes of geometries during build
– Disable opening when single object isolated

§ Slightly more expensive BVH build

§ Up to 2x improvement of render performance of dynamic BVH

28

Embree Improved Top Level Build

“Improved Two-Level BVHs using Partial Re-Braiding”, Carsten Benthin, Sven
Woop, Ingo Wald, Attila T. Afra, High Performance Graphics 2017

“Embree Ray Tracing” demo at Intel booth #807

Embree Overview
Embree API
Advanced Features

29

Diffuse Path Tracing Performance
§ Simple illumination effect to measure pure ray tracing performance

§ Highest quality BVH build for all platforms

§ Embree v2.16.0 performance measured on:
– Dual socket Intel® Xeon® Platinum 8180 Processor (2x28 cores @ 2.5 GHz,

AVX-512)
– Intel® Xeon Phi™ 7250 Processor (68 cores @ 1.4 GHz, AVX-512)

§ Comparing against state of the art GPU methods using:
– OptiX™ Prime 4.0.2 and CUDA® 8.0.44
– NVIDIA Tesla P100 Coprocessor (3584 CUDA cores @ 1.175 GHz, Pascal)

30

3D Models used for Benchmarking

Power Plant
12.8M triangles

Art Deco
10.7M triangles

Villa
37.7M triangles

Mazda
5.7M triangles

San Miguel
10.5M triangles

31

Diffuse Path Tracing Performance

0

50

100

150

200

250

Mazda
(5.7M Tris)

Villa
(37.7M Tris)

Art Deco
(10.7M Tris)

Power Plant
(12.8M Tris)

San Miguel
(10.5M Tris)

Intel® Xeon® Platinum 8180
Processor
2 x 28 cores, 2.5 GHz

Intel® Xeon Phi™ 7250
Processor
68 cores, 1.4 GHz

NVIDIA Tesla P100
Coprocessor
PCIe, 16 GB RAM

Million Rays Per Second (Higher is Better), 3840x2160 image resolution

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance.

32

Questions?

33

https://embree.github.io
embree@googlegroups.com

Visit the Intel booth #807 for a live Embree demo!

Legal

35

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN,
MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice.
All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are
available on request.
Optimized Intel® HD Graphics P3000 only available on select models of the Intel® Xeon® processor E3 family. To learn more about Intel Xeon processors for workstation visit www.intel.com/go/workstation.
HD Graphics P4000 introduces four additional execution units, going from 8 in the HD P3000 to 12 in the HD P4000. Optimized Intel® HD Graphics P4000 only available on select models of the Intel® Xeon®
processor E3-1200 v2 product family. For more information, visithttp://www.intel.com/content/www/us/en/architecture-and-technology/hdgraphics/hdgraphics-developer.html
Iris™ graphics is available on select systems. Consult your system manufacturer.
Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not
authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.
Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel’s current plan of record product roadmaps.
Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to :
http://www.Intel.com/performance

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk are trademarks of Intel
Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee
the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer and Optimization Notice

36

