
Carsten Benthin, Principal Engineer

Intel Corporation

2

Legal
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular

purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change

without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications.

Current characterized errata are available on request.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation.

Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or

retailer or learn more at intel.com.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,

such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change

to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating

your contemplated purchases, including the performance of that product when combined with other products. For more information go to
www.intel.com/benchmarks
Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred

to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Intel, Xeon and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

http://www.intel.com/benchmarks

• Application Programming Interface (API)

• Bounding Volume Hierarchy (BVH)

• Independent Software Vendor (ISV)

• Instruction Set Architecture (ISA)

• Intel® Advanced Vector Extensions (Intel® AVX)

• Intel® Advanced Vector Extensions 2 (Intel® AVX2)

• Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

• Intel® SPMD Program Compiler (Intel® SPC)

• Intel® Streaming SIMD Extensions (Intel® SSE)

• Intel® Threading Building Blocks (Intel® TBB)

• Non-Uniform Rational Basis Spline (NURBS)

• Single Instruction, Multiple Data (SIMD)

• Single Program, Multiple Data (SPMD)

• Surface Area Heuristic (SAH)

3

Acronym List

Embree API
Selected Advanced Features
Embree Performance
Summary & OUTLOOK

• Movie industry intensively uses ray tracing today
(better image quality, faster feedback)

• High-quality rendering for commercials, prints, etc.

• Provides higher fidelity for virtual design
(automotive industry, architectural design, etc.)

• Various kinds of simulations
(lighting, sound, particles, collision detection, etc.)

• Prebaked lighting in games, starting to go real-time for
ray traced lighting and sound effects

6

Usage of Ray Tracing Today

• Need to multi-thread
Easy for rendering but difficult for hierarchy construction

• Need to vectorize
Efficient use of SIMD & ISAs (Intel® SSE, Intel® AVX, Intel® AVX2, Intel® AVX-512)

• Need to support different CPUs
Different ISAs/CPUs favor different data structures, data layouts, and algorithms

• Need deep domain knowledge
Many different data structures and algorithms to choose from

• Different usage scenarios
Large model visualization favors memory conservative algorithms

7

Fast Ray Tracing Challenges

• Targets professional rendering applications

• Provides highly optimized ray tracing kernels

• 1.5–6× speedup reported by users

• Provides rich functionality and flexibility

• Support for latest CPUs and ISAs (e.g. Intel® AVX-512)

• Windows* (64 and 32 bit), macOS* 10.x, Linux*

• API for easy integration into applications

• Open Source under Apache* 2.0 license:

• http://embree.github.com

8

Embree Ray Tracing Kernels

8
*Other names and brands may be claimed as the property of others.

9

CPU/Embree Only Corona Renderer

*Other names and brands may be claimed as the property of others.

V-Ray Embree Hair Primitives

Embree Broad Adoption – 70+ Apps
DWA How To Train Your Dragon 2

ADSK 360 Cloud – >50M Renders

ParaView with OSPRay

ANL VL3 Dark Matter - OpenSWR

SURVICE StingRay

Rendered with FluidRay RT

Cinema4D

Embree Timeline

10

2
.0

:
X

e
o

n
 P

h
i,

R
a

y
p

a
ck

e
ts

, I
S

P
C

2
.1

:
N

e
w

 A
P

I,
R

u
n

ti
m

e

co
d

e
 s

e
le

ct
io

n

2
.2

: I
n

te
rs

e
ct

io
n

 f
ilt

e
r

2
.3

: H
a

ir
 s

u
p

p
o

rt

2
.3

.1
: B

V
H

8
, S

p
a

ti
a

l s
p

lit
s

2
.4

: S
u

b
d

iv
is

io
n

 s
u

rf
a

ce

su
p

p
o

rt

2
.5

: T
h

re
a

d
in

g
 B

u
ild

in
g

B

lo
ck

s

2
.6

: I
n

te
rp

o
la

ti
o

n

2
.7

:
D

e
vi

ce
 c

o
n

ce
p

t

2
.8

:
 L

in
e

 g
e

o
m

e
tr

y,
 Q

u
a

d

g
e

o
m

e
tr

y

2
.9

: R
a

y
st

re
a

m
s

2
.1

0
: G

e
o

m
e

tr
ic

 c
u

rv
e

2
.1

1
:

F
ru

st
u

m
 t

ra
ve

rs
a

l

2
.1

2
: M

u
lt

i
se

g
m

e
n

t
m

o
ti

o
n

 b
lu

r

2
.1

4
: R

ib
b

o
n

 h
a

ir

in
te

rs
e

ct
o

r

2
.1

5
: B

-S
p

li
n

e
 b

a
si

s

2
.1

6
: I

m
p

ro
ve

d
 m

u
lt

i
se

g
m

e
n

t
m

o
ti

o
n

 b
lu

r,

im
p

ro
ve

d
 t

w
o

 l
e

ve
l

b
u

il
d

e
r

3
.0

: I
m

p
ro

ve
d

 A
P

I,
im

p
ro

ve
d

 m
e

m
o

ry

co
n

su
m

p
ti

o
n

3
.1

: N
o

rm
a

l
o

ri
e

n
te

d

cu
rv

e
s,

 g
ri

d
 g

e
o

m
e

tr
y

3
.2

: H
e

rm
it

e
b

a
si

s

2017201620152014 2018

 Triangle meshes

 Quad meshes

 Grid meshes (NEW)

 Subdivision meshes

 Flat curves

 Round curves

 Normal-oriented curves (NEW)

 Instances

 User-defined extensible

Trolls (2016), rendered with MoonRay, DreamWorks Animation*
11

Geometry Types

• Find closest hit (rtcIntersect), find any hit (rtcOccluded)

• Single rays, ray packets (4, 8, 16), ray streams (N)

• High-quality and high-performance parallel BVH builders

• Exploit nested parallelism through Intel® Threading Building Blocks (TBB)

• Multi-segment motion blur, instancing, static/dynamic objects, callback funcs., …

• API support for applications written in:

• C/C++ and Intel® SPMD Program Compiler (ISPC)

• No dependence on other graphics APIs like DirectX*, OpenGL*, …

12

Embree Features

*Other names and brands may be claimed as the property of others.

Embree System Overview
Embree API (C99 and ISPC)

Ray Tracing Kernel Selection

Acceleration
Structures

bvh4.triangle4
bvh8.triangle4
bvh4.quad4v

…

Builders

SAH Builder
MBlur Builder

Spatial Split Builder
Morton Builder

BVH Refitter

Traversal

Single Ray
Packet/Hybrid

Ray Stream

Common Vector and SIMD Library
(Vec3f, Vec3fa, vfloat4, vfloat8, vfloat16, …, Intel® SSE2, Intel® SSE4.1, Intel® AVX, Intel® AVX2, Intel® AVX-512)

Intersection

Möller-Trumbore
Plücker

Flat Curve
Round Curve

Oriented Curve
Grid

Subdiv Engine

B-Spline Patch
Gregory Patch

Tessellation Cache
Displ. Mapping

13

Embree Overview

Selected Advanced Features
Embree Performance
Summary & OUTLOOK

• Version 3 of the Embree API

• Object-oriented

• Reference-counted

• Device concept

• Compact and easy to use

• Hides implementation details (e.g. ISA and acceleration structure selection)

• For details visit https://embree.github.io/api.html

15

Embree API Overview

https://embree.github.io/api.html

• Cleanup of previous API

• Improved flexibility

• Easier to use + API bug fixes

• New primitives, e.g. normal oriented curves, grids, ...

• Support for > 4 billion primitives

• More robust intersection computations

• Reduced memory consumption for instances and higher performance

• Conversion script makes adoption easy (included in Embree)

16

Advantages AND NEW FEATURES of 3.x API

17

• Scene contains a vector of
geometries

• Scene geometry changes
have to get committed
(rtcCommitScene), which
triggers BVH build

Example: Scene creation
// include Embree headers
#include <embree3/rtcore.h>

int main()
{

// create Embree device at application startup
RTCDevice device = rtcNewDevice();

// create scene
RTCScene scene = rtcNewScene(device);

// attach geometries
... later slide ...

// commit changes
rtcCommitScene(scene);

// trace rays
... later slide ...

// release objects
rtcReleaseScene(scene);
rtcReleaseDevice(device);

}

18

• Triangle mesh contains
vertex and index buffers

• Shared buffers of flexible
layout (offset + stride)
supported

Example: Triangle Mesh creation
// application vertex and index layout
struct Vertex { float x, y, z, s, t; };
struct Triangle { int materialID, v0, v1, v2; };

// create triangle mesh
RTCGeometry geom = rtcNewGeometry(device,

RTC_GEOMETRY_TYPE_TRIANGLE);

// share data buffers
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0,

RTC_FORMAT_FLOAT3, vertexPtr, 0, sizeof(Vertex));
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0,

RTC_FORMAT_UINT3, indexPtr, 4, sizeof(Triangle));

// commit geometry
rtcCommitGeometry(geom);

// attach geometry to scene
rtcAttachGeometryByID(scene, geom, user_provided_geomID);

// commit changes
rtcCommitScene(scene);

19

• Context passed to
potential callbacks

• Use RTCRayHit for normal
rays

• Use RTCRay for occlusion
rays

• Hit data and ray.tfar set in
case of hit

Example: Tracing Single Rays
// create intersection context
RTCIntersectContext context;
rtcInitIntersectContext(&context);

// create ray
RTCRayHit query;
query.ray.org_x = 0.0f;
query.ray.org_y = 0.0f;
query.ray.org_z = 0.0f;
query.ray.dir_x = 1.0f;
query.ray.dir_y = 0.0f;
query.ray.dir_z = 0.0f;
query.ray.tnear = eps;
query.ray.tfar = inf;
query.ray.time = 0.0f;
query.hit.geomID = RTC_INVALID_GEOMETRY_ID;
query.hit.primID = RTC_INVALID_GEOMETRY_ID;

// trace ray
rtcIntersect1(scene, &context, query);

// hit data filled on hit
if (query.hit.geomID == RTC_INVALID_GEOMETRY_ID) return;

// hit data filled on hit
float u = query.hit.u;
float v = query.hit.v;
float t = query.ray.tfar;

• C99-based language plus vector extensions

• Simplifies writing vectorized renderer

• Scalar looking code that gets vectorized automatically

• Guaranteed vectorization

• Compilation to different ISAs (Intel® SSE, Intel® AVX, Intel® AVX2, Intel® AVX-512)

• Used for written application/rendering/shading code

• Available as Open Source from http://ispc.github.com

20

Intel® SPMD Program Compiler (ISPC)

http://ispc.github.com/

21

Example: Rendering using Intel® ISPC
// loop over all screen pixels
foreach (y=0 ... screenHeight-1, x=0 ... screenWidth-1) {

// create and trace primary ray

RTCRayHit primary = make_RayHit(p, normalize(x*vx + y*vy + vz), eps, inf);

rtcIntersectV(scene, &context, ray);

// environment shading

if (primary.hit.geomID == RTC_INVALID_GEOMETRY_ID) {

pixels[y*screenWidth+x] = make_Vec3f(0.0f); continue;

}

// calculate hard shadows

RTCRay shadow = make_Ray(primary.ray.hitPoint(), neg(lightDir), eps, inf);

rtcOccludedV(scene, &context, shadow);

if (shadow.tfar < 0.0f)

pixels[y*width+x] = colors[ray.primID]*0.5f;

else

pixels[y*width+x] = colors[ray.primID]*(0.5f + clamp(-dot(lightDir,normalize(primary.hit.Ng)),0.0f,1.0f));
}

Embree Overview
Embree API

Embree Performance
Summary & OUTLOOK

• Quad rendered as pairs of triangles (v0,v1,v3 and v2,v3,v1)

• Mixed triangle/quad mesh supported (v0,v1,v3,v3)

• Most 3D modeling packages produce quad meshes

• Lower memory consumption

• Faster BVH building

• Ray tracing performance slightly lower than for triangles

23

Quad Meshes

v0

v1

v2

v3

• Primitives are grids of vertices with regular triangulation

• For displaced surfaces with higher tessellation levels

• Use quad meshes for low tessellation levels

• Extremely low memory consumption

• Down to 4 bytes per triangle

• Use instead of subdiv mesh with displacement function

24

Grid Meshes

• Converts coarse mesh into smooth surface (subdivision)

• Support for arbitrary topology

• Established as standard in movie production

• Embree implementation compatible with
OpenSubdiv 3.0 (creases, boundary modes, etc.)

• Evaluation of surface supported

• Walking mesh topology supported

Catmull-Clark Subdivision Surfaces

25

• Curve bases

• Linear (for very distant curves)

• Cubic Bézier (widely used representation)

• Cubic B-spline (most compact)

• Cubic Hermite (compact and interpolating)

• Curve types

• Flat curves (for distant geometry)

• Round curves for close-ups (swept circle)

• Normal-oriented curves (for grass)

26

Curve GeometrIES

• Supports varying radius along the curve

• High performance through use of oriented bounding boxes
[Woop et al. 2014]

• Low memory consumption through direct ray/curve
intersection (new algorithm)

27

Curve GeometrIES

• Enables implementing custom primitives and
features

• Sphere, disk, multi level instancing, rotation
motion blur, etc.

• User provides:

• Bounding function

• Intersect and occluded functions

28

User-Defined Geometries

• Per-geometry callback

• Called during traversal for each primitive intersection

• Callback can accept or reject hit

• Can be used for:

• Trimming curves (e.g. modeling tree leaves)

• Transparent shadows (reject and accumulate)

• Find all hits (reject and collect)

• Advanced self-intersection avoidance

29

Intersection Filter Functions

• Important to render fast curved motion (e.g. rotating
wheels, fight scenes, spinning dancers, etc.)

• Sequence of time steps to be piecewise-linearly
interpolated

• Typically equidistant time steps and often different
number of time steps per geometry

• 4D-BVH which stores linear spatial and temporal
bounds

• BVH can spatially separate geometries

• BVH can reduce time ranges where required 30

Multi-Segment Motion Blur

31

Embree Overview
Embree API
Selected Advanced Features

Summary & OUTLOOK

Benchmark Overview
• Path tracer with different material types, different light types, ~2k lines of code

• Similar implementation for CPU (ISPC + Embree) and GPU (CUDA* + OptiX*)

• Highest quality BVH build settings for all platforms

• Evaluation on typical Intel® Xeon® rendering workstation†

• Dual-socket Intel® Xeon® Platinum 8180 Processor (2x28 cores @ 2.5 GHz)

• Compare against state-of-the-art GPU methods

• OptiX 5.1.0 and CUDA 9.2.88

• NVIDIA Tesla* V100 Coprocessor (5120 CUDA cores @ 1.37 GHz, Volta)

*Other names and brands may be claimed as the property of others.

33

33

Performance: Embree vs. NVIDIA OptiX*

0

10

20

30

40

50

60

70

80

90

Bentley

(2.3M Tris)

Crown

(4.8M Tris)

Dragon

(7.4M Tris)

Karst Fluid Flow

(8.4M Tris)

Power Plant

(12.8M Tris)

Intel® Xeon® Platinum 8180

2 x 28 cores, 2.5 GHz

Embree 2.17.4

NVIDIA Tesla P100

PCIe, 16 GB RAM

OptiX 5.1.0

NVIDIA Tesla V100

PCIe, 16 GB RAM

OptiX 5.1.0

Frames Per Second (Higher is Better), 1024x1024 image resolution

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance.

Embree 2.17.4, Intel® C++ Compiler 18.0.3,
Intel® SPMD Program Compiler (ISPC) 1.9.2

NVIDIA OptiX* 5.1.0, CUDA* 9.2.88

Source: Intel

*Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

Embree Overview
Embree API
Selected Advanced Features
EMBREE PERFORMANCE

• Embree provides optimized and scalable ray tracing kernels for the CPU

• Latest state-of-the-art feature set

• Lots of ray tracing research goes directly into Embree

• Actively developed and completely open-source

• Easy to integrate into existing applications

• Lots of ISVs using it as their core ray tracing engine

35

SUMMARY

• Denoising

• Quaternion interpolation for transformation motion blur

• Non-uniform motion blur

• New primitive types (disk, sphere, bilinear patch)

• Improve ray/geometry masking and instancing performance

• Point projection onto geometry (robust manifold next event estimation)

• Partial double support

36

Outlook

Check out the Embree/OSPRay demos at booth #1300 West Hall

https://embree.github.io

embree_support@intel.com

embree@googlegroups.com

37

Questions?

https://embree.github.io/
mailto:embree_support@intel.com
mailto:embree@googlegroups.com

38

